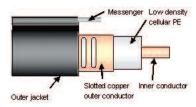


TECHNICAL DATA SHEET Radiating Cables

cable


1/2

F-RMC 78-T

PRODUCT DESCRIPTION

F-RMC 78-T-HLFR

Reference suffix (1):-HLFR

Fire behaviour

Halogen free and flame retardant outer sheath, Low corrosive gas emission acc. to IEC 60754-2 Flame retardant acc. to IEC 60332-1 and IEC 60332-3 cat. C, Low smoke emission acc. to IEC 61034

Slots in the copper outer conductor allow a controlled portion of the internal RF energy to be radiated into the surrounding environment. Conversely, a signal transmitted near the cable will couple into the slots and be carried along the cable length.

FEATURES and BENEFITS

- From 30 MHz to 1 GHz with resonant frequencies
- Robust Cable, with low bending radius
- · Main Applications: Tunnel FM, TETRA

TECHNICAL FEATURES

• Size		7/8"
 Previous Model Number 		F 522RC8RMT-HLFR
Frequency Range	MHz	30 - 1000
 Recommended for Frequency 	MHz	450
Cable Type		RMC (Radiated Mode Cable)
• Jacket		HLFR (Halogen Free Low Smoke Flame Retardant)
• Slot Design		Groups of Slots at short intervals
 Impedance 	Ω	50 +/- 2
Velocity Ratio	%	88
 Capacitance 	pF/m	76
 Inner Conductor dc Resistance 	$\Omega/1000$ m ($\Omega/1000$ ft)	1.63 (0.49)
 Outer Conductor dc Resistance 	$\Omega/1000$ m ($\Omega/1000$ ft)	1.50 (0.46)
 Inner Conductor Material 		Smooth copper tube
 Dielectric Material 		Cellular polyethylene
Outer Conductor Material		Overlapping copper foil, with slot groups, bonded to the jacket

TECHNICAL DATA SHEET Radiating Cables

Rev.: 09/2012-06-11

cable

2/2

F-RMC 78-T

TECHNICAL FEATURES (continued)

Diameter Inner Conductor	mm (in)	9.2 (0.36)
 Diameter Dielectric 	mm (in)	23.5 (0.93)
Diameter over Jacket	mm (in)	27.0 (1.06)
 Minimum Bending Radius, Single Bend 	mm (in)	350 (13.78)
Cable Weight	kg/m (lb/ft)	0.725 (0.48) HLFR
 Tensile Strength 	daN (lb)	130 (287)
 Indication of Slot Alignment 		Opposite of messenger
 Storage Temperature 	°C (°F)	-70 to +85 (-94 to +185)
 Installation Temperature 	°C (°F)	-25 to +60 (-13 to +140)
 Operation Temperature 	°C (°F)	-40 to +85 (-40 to +185)
 Material of Messenger 		galvanised steel
 Construction of Messenger 	mm (in)	19 x 0.8 (19 x 0.03)
Diameter over Messenger Jacket	mm (in)	7.5 (0.3)
 Maximum Pole Spacing 	m (ft)	20 (66)
Breaking Strength of Messenger	daN (lb)	1225 (2701)

• Longitudinal Loss and Coupling Loss (2)

3 1 3					
	Frequency		Longitudinal Loss	dinal Loss Coupling Loss	
			dB/100 m (dB/100 ft)	C50% [dB]	C95% [dB]
	75 MHz		1.10 (0.34)	57	63
	150 MHz		1.80 (0.55)	61	72
	225 MHz		2.00 (0.61)	60	68
	400 MHz		2.70 (0.82)	53	57
	450 MHz		2.90 (0.88)	52	55
	900 MHz		5.10 (1.55)	67	77
	1800 MHz		-	-	-
	1900 MHz		-	-	-
	2200 MHz		-	-	-
Resonant Frequencies		MHz	37, 111, 184, 258, 332, 406	5 ±3, 479, 553, 627, 700,	774, 848, 922, 995
Clamp Spacing Recommended / Maximum		m (ft)	N.A.		
Distance to Wall Recommended / Minimum		mm (in)	80 - 180 (3.15 - 7.00) / 5	50 (1.96)	

¹⁾ Must be specified in case of order - standard PE jacket available on request.

The above stated values are nominal values and subject to manufacturing tolerances as follows: Longitudinal Loss +/-5 % and Coupling Loss +/- 3dB.

As with any radiating cable, the performance in building or tunnel may deviate from figures measured according to the IEC 61196-4 standard.

Coupling loss measurements taken in accordance with IEC 61196-4 - Free Space Method are available on request

⁽²⁾ Measured in tunnel according to **IEC 61196-4 - Ground Level Method**.

Distance = 2m. C50 & (C95) are the average coupling losses with 50% (95%) probability calculated in accordance with the standard.